Which Substances are Potent and Selective Inhibitors of Target?

Potent and Selective COX-2

It is clear that COX-2 plays an important role in tumor and endothelial cell biology. Increased expression of COX-2 occurs in multiple cells within the tumor microenvironment that can impact on angiogenesis.

COX-2 appears to:

- Play a key role in the release and activity of proangiogenic proteins;
- Result in the production of eicosanoid products TXA2, PGI2, PGE2 that directly stimulate endothelial cell migration and angiogenesis in vivo, and
- Result in enhanced tumor cell, and possibly, vascular endothelial cell survival by upregulation of the antiapoptotic proteins Bcl-2 and/or activation of PI3K-Akt.

Selective pharmacologic inhibition of COX-2 represents a viable therapeutic option for the treatment of malignancies. Agents that selectively inhibit COX-2 demonstrate that chronic treatment for angiogenesis inhibition is feasible. As a continuous research for discovery of new COX-2 inhibitors, new synthetic potent and selective inhibitors of COX-2 are of great interest as antiangiogenic agent.

Let's search for potent and selective inhibitors of Cyclooxygenase 2 (COX-2) versus Cyclooxygenase COX-1.

* Define the Search Query using the Query builder

Reaxys	Quick search Query builder Results Synthesis planner History	Elsevier Reaxys 🖉 💿
	Search substances, reactions, documents and bioactivity data in Reavys, Reavys Medicinal Chemistry, PubChem, eMolecules and LabNetwork	
	Q Reactions, e.g. phosphorylation	
	AND	
TREAXYS [®] Version 1		Feedback Ϙ

1. On the Reaxys home page, click **Query builder**

2. In the Find search fields and forms box, type selectivity

The list if filtered to include fields and forms that include the word selectivity. In this case the *Selectivity Profile* form is displayed.

Reaxys	Quick search	Query builder	Results	Synthesis p	lanner	History	Elsevier Reaxys	0
ょ 回 の 前			Ô		Searc		Find search fields and forms Q selectivity	×
Import Save Rest form Delete			Structure	Molecular Formula	CAS RN	Doc. Index	Selectivity Profile	
	Drag & Drop t	o build a new c	luery					
							Feedba	ick 📿

a. Drag and Drop the *Selectivity Profile* form onto the query builder.

Reaxys	Quick search Query builder	Results Synthesis planner History Elsevier Reasys	0
과 🖻 🗧) 🔟 form Delete	Search > V Search Search fields and forms Q selectivity	×
	 Selectivity Profile Target Name 	X Selectivity Profile	
	is <u>Target Name</u>	E ►	
	◇ Measurement pX >= ✓ Measurement pX	<	
	So Target Name	E.	* 0

Reaxys®

The *Selectivity Profile* form is displayed with the *combine operator*. The *combine operator* will allow users to search for substances tested on two targets whatever the origin of the targets (same or different bioassays, same or different publication).

2			
◇ Target	Name		
is	~	Target Name	Ed
◇ Measur	rement pX		
>=	~	Measurement pX	EQ
> Target	Namo		
is		Target Name	Ea
◇ Measur	rement pX		
	24	Massurament aX	

Next, let's complete the *Selectivity Profile* form with:

- The first target as Prostaglandin G/H synthase 2 (COX-2) and the associated pX greater than or equal to 8 (below 10 nM).
- The second target as Prostaglandin G/H synthase 1 (COX-1) and the associated pX with lower than or equal to 6 (over 1 μ M) and search for Substances.
- 3. Define the first *Target name* to be *cox2* (*prostaglandin g/h synthase 2*):
 - a. Click the first *Target Name* field and type *cox2*.
 - b. Click cox2 (prostaglandin g/h synthase 2) from the suggestion list.

Set the first *Measurement pX* to >= 8 (e.g. user searched for substances highly potent on COX-2 with a potency below 10 nM using IC50, Ki, EC50 etc.).

	Jame Target Name cox2	民
Measur	ement pX Measurement pX 8 1 1 1 1 1 1 1 1 1	扇
ABINE)	/	
~ T+ N	vame	

- 5. Define the second *Target name* using the *Lookup tool*:
 - a. For the second *Target Name* click the *Lookup tool*

~			
◇ Target I	Name		
122	V	Target Name	
IS		cox2	Eq
◇ Measur	ement pX		
		Measurement pX	
>=	¥	8	ĒQ
\$			
◇ Target I	Name		
	\sim	Target Name	Eq
is			
is	ement pX		
is AND Measur <=	ement pX	Measurement pX	Ē

b. Type *cox1* (do NOT press the Enter key)

c. Click cox1(prostaglandin g/h synthase 1) from the suggestion list and press the Enter key

 Targets proteir Unclas Unclas cox1 (cytochronic c oxidase sub cox17 cox17 (cytochronic c oxidase co cox17 cox17 (cytochronic c oxidase co cox17a 	bunit 1) ase 1) sopper chaperone) bunit 2)
--	---

Note: The search in the Taxonomy is performed using a substring within the full name and the associated synonyms of the target. The searched term is highlighted in orange when found in synonyms and corresponding main terms are displayed as a flat list at the bottom of the page. In the *Selected search items* section the terms can be deleted by clicking on the blue X.

Numbers on the right hand side of the windows are counting bioactivities (data points) on the corresponding target or family of target.

Targets		18,645,53
> 🔁 protein	-	15,046,40
> 📔 antioxidant protein	_	123,06
> 🔁 peroxidase		108,72
> 🔁 Haem peroxidase		103,84
🗲 📔 Haem peroxidase, animal	-	103,84
> Prostaglandin G/H synthase 1 (COX1 (Prostaglandin G/H synthase 1))	-	47,32
> 🔁 Unclassified Targets		9,634,70
> 🔁 P	6	1,162,69
> 🔁 Pr	C	452,91
Prostaglandin G/H synthase 1 (COX1 (Prostaglandin G/H synthase 1))	_	13,85
lected search items: Prostaglandnthase 1 × Prostaglandnthase 1 ×		

d. Click Transfer

Cox1 (prostaglandin g/h synthase 1) X 61185		×
> 🔁 Targets	_	18,645,531
> 🔁 protein		15,046,403
🗲 🔁 antioxidant protein		123,067
> 🔁 peroxidase		108,729
> 📔 Haem peroxidase		103,848
🗲 📔 Haem peroxidase, animal		103,847
Prostaglandin G/H synthase 1 (COX1 (Prostaglandin G/H synthase 1))	_	47,327
> 🔁 Unclassified Targets	-	9,634,702
> 🔁 P		1,162,697
> 🔁 Pr		452,918
Prostaglandin G/H synthase 1 (COX1 (Prostaglandin G/H synthase 1))	-	13,858
Selected search items:	\	
Prostagland nthase 1 × Prostagland nthase 1 ×		
Clear selected X		Transfer >

6. Set the second **Measurement pX** to <= 6 (e.g. user searched for substances less potent on COX-1 with a potency over 1μM using IC50, Ki, EC50 etc.).

8		
◇ Target	Name	
		Target Name
is	~	cox2
◇ Measur	rement pX	
		Measurement pX
>=	~	8 6
2		
≥	Name	
	Name Y	Target Name Prostaglandin G/H synthase 1;Prostaglandin G/ 民
	Name V	Target Name Prostaglandin G/H synthase 1;Prostaglandin G/ ॡ
	Name ~ rement pX	Target Name Prostaglandin G/H synthase 1;Prostaglandin G/民

7. Click *Search* on the top of the screen and click the desired content (Reactions, Targets, Substances or Documents), in this example *Substances*.

Sector V Import Sex Rest form Delete Measurement pX	0
Import Save Restform Delete Structure Molecular controls A Measurement pX Selectivity Profile Controls)
 ◇ Measurement pX > Measurement pX > Selectivity Profile > Selectivit	
Cucuents Concurrents Concurren	
Target Name is Target Name is Prostaglandin G/H synthase 1;Prostaglandin Gr Image: Control of the synthese is the synt	
◇ Target Name is Yerstaglandin G/H synthase 1;Prostaglandin G/R ✓ <td></td>	
✓ Measurement pX ✓ Measurement pX ✓ 6 6	
◇ Measurement pX	
← Measurement pX 6 E E E	

The Results Page is displayed. Reaxys Medicinal Chemistry will retrieve substances tested on the above-mentioned targets with a 100 selectivity fold COX-2 versus COX-1.

Rec	ixys	Quick se	earch	Query builder R	esults Synthesis planne	r History	Elsevier Reaxys	?
427	Filters and Analysis		427 S	ubstances out of 587	Documents, containing 1,783 Reacti	ons, 12 Targets	Reaxys - 427	~
	By Structure	~		⊙ ⊘ ₫ Limit To Exclude Export		0 0 0 No of F	References 4 🗸 🛛 Heatmap	=
	Measurement pX	~						
	Highest Clinical Phases	~	1		[1-(4-chlorobenzoyl)-5-metho C ₁₉ H ₁₆ ClNO ₄ 357.793 49734	xy-2-methylindol-3-yl]acetic : 1 53-86-1	acid	
	Targets	~		ne film	Identification	Physical Data - 492	Preparations - 61	>
				and and	Druglikeness	Spectra - 155	Reactions - 852	>
	Parameters	~		ion Ten	Bioactivity (Hit Data)	Other Data - 1,653	Targets - 703	>
	Substance Classes	~		¥.	Bioactivity (All)		Documents - 6,657	>
	Molecular Weight	~			[2-(2,6-dichloroanilino)pheny	[]acetic acid		
	Availability	~	2	.P.	C14H11C2NO2 290.153 2140	230 1230/-80-2	Descentions 29	
	Availability in other databases	~		CJ."	Druglikeness	Spectra - 67	Reactions - 419	>
				al at	Bioactivity (Hit Data)	Other Data - 2,330	Targets - 339	>
	Available Data	\sim		Ľ.	Bioactivity (All)		Documents - 4,041	>
	Document Type	~					Feedback	P

View the Heatmap

- 1. Click Heatmap.
 - a. Review the Settings and click *Apply*.

▲ 😤 🥥 🛈 Export Settings Navigator Legen 0 Substances 📄 🛛 Exit fullscreen 🧩 Prostaglandin G/H synthase 1 Prostaglandin G/H synthase 2 Targets Substances [1-(4-chloro... tic acid ۲ . etod 0 trans-piceatannol 0 fluorobiprofen 0 [2-(2,6-dichl...tic acid 0 nimesulide 0 4-[5-(4-chl...fonamide 0 Navigator × 4-[5-(4-br... fonamide 0 1-[7-(1,1-d...yn-1-one . flosulide 0 meloxicam . 5,6-Diph Feedback 💭

The Heatmap is displayed showing selective compounds in a graphical way.

Sort compounds by descending bioactivities on COX-2:

2. Click the *COX-2 three dots* and *Sort by activity*.

This will rank the compounds by decreasing potency on the COX-2 target. The most potent COX-2 inhibitors will be at the top of the Heatmap.

Bioactivities contained in the cell are displayed by clicking directly in the cell.

475	0 O O Limit To Exclude	1 Export Set	Substances 📄 Exit fullscreen 🧏			
		Targets	enzyme		Prostagiandin G/H synthase 1	Prostaglandin G/H synthese 2
	Substances		(m)		•	•
	meloxicam				•	12.8
	2-[4-(amin H-indole				1	11.2
	2-{4-aminosylindole				1	10.8
	4-[5-(4-(honamide		4.6		6	
	H-Trp-Tyr-Asp-OH				4.2	10.7
	3-(4-fluoro H-indole				5.1	10.7
	3-(4-meth H-indole	•	Navigator	×	<u>1</u>	10.7
	2-(4-methyl ylindole		Tungator		<u> </u>	10.6
	2-(4-aminosI)indole				1	10.2
	2-(4-Methyl ylindole				<u>i</u> .	10.2
	N-cyclope2-amine				1	10
	2-(4-aminosylindole	•			į,	10 Feedback 💭

The corresponding substances and bioactivities are then displayed on the screen

Bioact	ivity detai	1					;
1		i T	C ₂₄ H ₂₈ N Identific Druglike In vitro:	407 4 ation eness Efficac	82.49 y - 1	22494124 950687-18-8	Maximum pX Value
H-T	rp-Tyr-A	sp-O	н				×
~	Identifica	tion					
~	Druglike	ness					
へ Quan	In vitro: E titative Res	fficacy	- 1				
							Show/Hide columns 🗸
рХ	Parameter	Value (qual)	Value (quant)	Unit	2	Reference	
10.7	Кd	=	1.9E-05	μΜ		Sharma, Sai Kiran; Al-Hourani, Baker Jawabr	ah; Wuest, Melinda; Mane, Jonathan

Copyright ©2017 Elsevier B.V.

Reaxys, RELX Group and the RE symbol are trade marks of RELX Intellectual Properties SA, used under license.